Информационно-развлекательный портал в Литве, по-русски, Vilnius, 07
01, 2025 www.topic.lt - Romanas (R.K. Frimen)

Topic.lt
 2025-01-07 13:26
Loading... (Longer if IE explorer)

Контакты
Наши RSS
website stats
По материалам:
Новое в интернете


Спонсоры.


В помощь
Как и Что? FAQ


www.PigiauNerasi.lt
Из Топика » Познай МИР » 10 заковыристых математических задач, над решением которых бьются до сих пор (11 фото)
10 заковыристых математических задач, над решением которых бьются до сих пор (11 фото)

+ - = Не вижу ФОТО!

На протяжении веков лучшие умы человечества решали одну математическую задачу за другой, однако есть несколько, не поддавшихся до сих пор никому. За нахождение алгоритма их решения некоторые фонды и компании готовы заплатить большие деньги.

10 заковыристых математических задач, над решением которых бьются до сих пор

Источник: techinsider.ru


Гипотеза Коллатца

10 заковыристых математических задач, над решением которых бьются до сих пор

Источник: techinsider.ru

Гипотеза Коллатца является одной из самых сложных нерешенных математических задач

Другие названия: гипотеза 3n+1, сиракузская проблема, числа-градины. Если взять любое натуральное число n и совершить с ним следующие преобразования, рано или поздно всегда получится единица. Четное n нужно разделить надвое, а нечетное — умножить на 3 и прибавить единицу. Для числа 3 последовательность будет такой: 3×3+1=10, 10:2=5, 5×3+1=16, 16:2=8, 8:2=4, 4:2=2, 2:2=1. Очевидно, что если продолжить преобразование с единицы, то начнется цикл 1,4,2. Достаточно быстро количество шагов в вычислениях начинает превышать сто и на решение каждой новой последовательности требуется все больше ресурсов.

Небольшой прогресс в решении этой задачи почти вековой давности наметился буквально в прошлом месяце. Однако знаменитый американской математик Терренс Тао лишь ближе всех подошел к нему, но ответа все равно пока не нашел. Гипотеза Коллатца является фундаментом такой математической дисциплины, как «Динамические системы», которая, в свою очередь, важна для множества других прикладных наук, например, химии и биологии. Сиракузская проблема выглядит, как простой безобидный вопрос, но именно это делает ее особенной. Несмотря на все попытки, эта проблема до сих пор остается самой известной нерешенной математической задачей.


Проблема Гольдбаха (бинарная)

10 заковыристых математических задач, над решением которых бьются до сих пор

Источник: techinsider.ru

Этот рисунок иллюстрирует нерешенную математическую проблему Гольдбаха, над которой ученые до сих пор ломают головы

Еще одна задачка, формулировка которой выглядит проще пареной репы — любое четное число (больше 2) можно представить в виде суммы двух простых. И это краеугольный камень современной математики. Данное утверждение легко проверяется в уме для небольших значений: 18=13+5, 42=23+19. Причем рассматривая последнее, можно достаточно быстро понять всю глубину проблемы, ведь 42 представляется и как 37+5 и 11+31, а еще как 13+29 и 19+23. Для чисел больше тысячи количество пар слагаемых становится просто огромным. Это очень важно в криптографии, но даже самые мощные суперкомпьютеры не могут перебирать все значения до бесконечности, поэтому нужно какое-то четкое доказательство для всех натуральных чисел.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы предлагаем Вам зарегистрироваться либо войти на сайт под своим именем.
















BangGood.com



Translate page:
Погода ?

«    Январь 2025    »
ПнВтСрЧтПтСбВс
 12345
6789101112
13141516171819
20212223242526
2728293031 



 
rss rss facebook youtube twitter linkedin
www.Topic.lt
facebook
PinIt